

21ST CENTURY LEARNING ACOUSTICS

Redefining possible.

Steve Meszaros, M.Sc., P.Eng Acoustical Technical Director / Associate

Introduction

Steve Meszaros

- B.Sc. (Mechanical Engineering) University of Manitoba
- M.Sc. (Biosystems Engineering) University of Manitoba
- Registered Professional Engineer British Columbia
- Acoustic Consultant 2001 present
 - Schools
 - Universities
 - Hospitals
 - Offices
 - Residential
 - Many more.....

Introduction

Who are you?

Have you worked with an Acoustic Consultant?

What do you know about Acoustics?

What is special about modern (21st Century) Schools?

What is your biggest challenge in modern school design?

Introduction

Who are you?

Have you worked with an Acoustic Consultant?

What do you know about Acoustics?

What is special about modern (21st Century) Schools?

What is your biggest challenge in modern school design?

- Designing for the actual use
- "future-proofing"

Summary

Acoustic refresher / background

- 1. Why acoustics are important
- 2. Acoustic targets and criteria
 - reducing distraction (sound isolation)
 - enhancing communication
 (room acoustics / background noise)
 - creating a calm environment
 (room acoustics / background noise)
- 3. Changes in the 21st Century
- 4. Value of acoustics/Examples

How do we describe sound?

Sound generally described using:

Magnitude – "Levels" (dB) Frequency – "Pitch" (Hz) Sound Levels

Sound pressure levels the decibel - dB

Sound level drops with distance

Add two equal sources: 50 dB + 50 dB = 53 dB

Human Perception: +/- 10 dB sounds twice or half as loud

Frequencies of Audible Sound

Frequencies for Musicians

Each octave higher doubles in frequency

A musical scale corresponds to a logarithmic frequency scale

Acoustical measurement s are presented in octave or 1/3 octave bands

Frequency (Hz)	
16	Dennahla
32	Rumble
63	D
125	Buzz
250	Liuna
500	Hum
1000	Whistle
2000	vvnistie
4000	Hiss
8000	ПІЗЗ
16000	
32000	

Broadband Sound

Human Hearing

Equal loudness contours

Equal Loudness in phons

Our ears are less sensitive to low frequencies and high frequencies

A-weighting curve

A-weighting curve

Sound Transmission Class (STC)

Sound Transmission Class (STC)

- Single number rating
- Based on sound transmission loss (TL) data (ASTM E90 & E 336)
- Weighted average of assembly performance (deficiencies)
- Based on isolating human speech
- Walls and floor/ceilings

In Common use

- Codes
- Specifications
- Compliance Documents

Sound Transmission Class (STC)

- Simple to use for preliminary selection
- Easy to compare various partitions

Disadvantages

- Inadequate where sound isolation is critical
- Lost detail

Benefits

- Does not ensure occupant comfort or privacy
- Not applicable to subwoofers and low frequency mechanical

Limitations of STC ...

Sound Transmission Class (STC)

Subjective impression to noise isolation:

STC Rating	Degree of	Acoustical Privacy
<45		Normal speech audible and usually intelligible
45	Marginal:	Normal speech audible and sometimes intelligible
50		Normal speech audible but not intelligible
55	Very Good:	Raised voices usually audible but not intelligible
60+	Excellent:	Raised voices not audible

*Assumes a quiet background sound level, typical for residential living areas (~35 dBA)

Room Acoustics

Room Acoustics

- Control of sound reflections within a space
- This is done by selecting appropriate finishes with varying sound absorbing properties

Reverberation Time (RT60)

Time required for the sound to diminish 60 dB Target depends on the use of the space and its volume

- Musical uses benefit from longer RT60
- Speech has higher clarity with low RT60 times

SAT scores decrease with poor acoustics

Bronzaft (1975, 1981)

- Measured noise and test scores on two sides of a school
 - One side adjacent to train line
 - Before and after noise mitigation from the train line

Evans and Maxwell (1997)

- Chronic noise exposure reduced reading scores (even when tested in a quiet environment)
- Noise exposure is related to impairment in speech perception

Haines, Brentnall, Stansfeld and Klineberg (2003)

 "Results from recent quantitative research consistently demonstrate that children are a high risk group, vulnerable to the adverse effects of noise exposure, especially effects on cognitive performance, motivation and annoyance."

SAT scores decrease with poor acoustics

Shield and Dockrell (2008)

"Activities affected by noise include memory, reading, motivation, and attention"

"Children with special educational needs were found to be more susceptible to the effects of classroom babble upon verbal tasks than other children."

"it is essential to give careful consideration to the acoustic design of a school in order to optimize conditions for teaching and learning.

SAT scores decrease with poor acoustics

Shield and Dockrell (2008) – KS2 = English, Math, Science

SAT scores decrease with poor acoustics

Shield and Dockrell (2008) KS2 = English, Math, Science

Design "should consider the most acoustically sensitive activity" – John Bradley

Speech communication is the most acoustically sensitive activity

• Quiet

•

- Reduces strain on teachers voices
- Increases intelligibility (SNR)
- Young, hearing impairment, ESL need quiet

Bradley and Sato (2008) – Average Teacher ~ 60 dBA

Reverberation time has an ideal point ~0.6 to 0.7 seconds

Acoustic Targets and Criteria

Acoustic targets and criteria

Acoustical Society of America

ANSI/ASA S12.60-2010/Part 1 American National Standard Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools, Part 1: Permanent Schools

Key Points:

- Focus on 'traditional' Classrooms
- Background Noise Levels <35 dBA
- Reverberation Time (RT60) = 0.6 0.7 s
- Sound Isolation
 - 50 classroom to classroom
 - 53 classroom to W/C
 - 45 classroom to corridor
 - 60 classroom to music / auditorium / mechanical / gym / cafeteria
- Impact Noise (IIC) 45 classroom to classroom

4 Cs:

- Creativity
- Creative Thinking and Problem Solving
- Communication
- Collaboration

Multi-media (Audio/Video)

- Recording (microphones)
- Amplified sound (speakers)

Building Design

- Open Classrooms
- Learning Commons
- 'Neighborhoods'

Flexibility Future-proofing Matching design to actual use

Options to consider:

- Operable walls
- Modular construction
- No walls

Best Solution:

Communication between users and designers

Value of Acoustics and Examples

Value of Acoustics

Sound Isolation

Deal with stopping distraction (both indoor and outdoor)

Walls

- Simple GWB and LIGHT GAUGE steel studs with fibrous insulation (5/8" Type 'X' GWB / 6" SS w batt / 5/8" Type 'X' GWB)
- Concrete block (8")

Windows

- 3/8" glass ~STC 35 (OITC 32)
- ¹/₂" laminated glass ~ STC 38 (OITC 34)
- 1/4" lam / 1/2" airspace / 1/4" lam ~ STC 42 (OITC 33)

Doors

- Solid core wood or insulated metal, no seals ~ STC 20
- With full perimeter seals and drop seal ~ STC 30

Value of Acoustics

Flanking / Holes

Valuable Example

Partition:

- High School Guidance Counselor's Office
- Waiting Room
- Partition cut around radiator
- Radiator is continuous and open through wall

Value of Acoustics

Room Acoustics

- Communication
- Calm Environment

Solutions:

- Fibrous/porous (thicker or spaced from wall)
- Ceiling Tiles
- Baffles

Cautions:

- Microphones
- Speakers

	Small Volume	Medium Volume	Large Volume
Special Acoustic Requirements	Audiology Booth	Studio SPEC	NFIC DESIGN
High Acoustic Requirements	Interview Room		
Medium acoustic requirements	Private Office	Music Room Teleconferencing TILE TYPICALLY SUFFICIEN Corridor	Gym
Low Acoustic Requirements	WC/Storage	Corridor CORFICIEN	Lobby/Atrium

Valuable Example

Room Acoustics Issue

- Space with 1/4" mineral fibre tiles glued to sloped ceiling
- Attempted to fix with PA systems

Value of Acoustics

Background Noise

Increase SNR (comprehension)

Sources

- Mechanical Rooms / rooftop mechanical
- Ducted mechanical
- Fan coil units

Value of Acoustics

Mechanical Noise Controls

- Walls/ceilings (including ACT)
- Duct silencers
- Vibration isolation (demo)
- Distance

Valuable Example

Mechanical Noise

- Noisy
- 'Cross-talk'

Dance Studio (adjacent)

Other Acoustic Considerations

Environmental Noise

- Transportation and other external noises (including rooftop)
- Construction noise
- Impact on outdoor areas and indoors

Floor Vibration

Students walking in corridors causing upper floors to shake

Impact Noise

Thumping footfalls

Details

- Acoustics details are paramount to success
- No 'silver bullet', ignoring one aspect can be problematic

Other Acoustic Considerations

The best time to consider acoustics is as early as possible when problems can be identified and corrective action can be easily incorporated.

Quick Summary

THANK YOU

Steve Meszaros, M.Sc., P. Eng. Steve.Meszaros@rwdi.com

Redefining possible.